

Combining state-of-the-art therapies to maximize efficacy in mitigating diabetic kidney disease in type 2 diabetes.

Petter Bjornstad, M.D.

Associate Professor of Medicine (Nephrology) and Pediatrics (Endocrinology)

Boettcher Investigator, Ludeman Center Scientist

University of Colorado Anschutz Medical Campus

Presenter Disclosure

- AstraZeneca:
- Bayer:
- Boehringer Ingelheim:
- Bristol-Meyer Squibb:
- Eli Lilly:
- LG Chem:
- Horizon Pharma:
- Merck:
- Novo Nordisk:
- Sanofi:
- XORTX Scientific:

Consultancy, Advisory Board, Grant support Consultancy, Advisory Board, Data Monitoring Committee Chair Consultancy, Advisory Board Consultancy Consultancy, Steering Committee, Grant Support Consultancy Advisory Board and Grant Support **Grant Support** Advisory Board, Consultancy and Grant Support Consultancy **Advisory Board**

Photography allowed

YOU MAY take photos of this presentation

Please be considerate of others in the session and avoid using flash

Reduced life expectancy in chronic kidney disease

DKD: unmet medical need

Renin-angiotensin-aldosterone system (RAAS) blockers

University of Colorado Anschutz Medical Campus

No cardiovascular protection in RENAAL, IDNT, IRMA trials

RENAAL. Brenner et al. NEJM 2001

Gaede P. N Engl J Med 2003;348(5):383-93.

Glycemic and blood pressure control ≠ DKD mitigation

Addressing this unmet need proven to be challenging

Trial	Intervention	Renal endpoints met	Adverse effects
VA NEPHRON-D	Losartan + Lisinopril vs PBO	- No	个 K+, acute kidney injury
ALTITUDE	ACE-i/ARB + Aliskiren vs PBO	- No	个 K+, hypotension
Sun-trials	ACE-i/ARB + Sulodexide vs PBO	- No	-
ASCEND	ACE-i/ARB + Avosentan vs PBO	- No	Fluid overload, CHF, anemia
BEACON	ACE-i/ARB + Bardoxolone methyl vs PBO	- No	CHF, CVD

Packham et al. JASN 2012Palmer et al. Lancet 2015Mann et al. JASN 2009Fried et al. NEJM 2013De Zeeuw et al. NEJM 2013Parving et al. NEJM 2012

The vicious cycle of renal tissue deterioration after hyperglycemia-induced renal hypoxia

Hesp and Bjornstad et al Kidney Int. 2020

Complex pathophysiology of DKD

Adapted from Muskiet MH. Nat Rev Nephrol 2014;10(2):88-103.

Trajectories of Kidney Function in DKD

Albuminuria categories (mg/g)

Oshima Nat Rev Nephrol 2021.

Trials in recent years have ended this drought

SGLT-2 inhibitors

Mineralocorticoid receptor antagonist (MRA): Finerenone

ORIGINAL ARTICLE

ORIGINAL ARTICLE

Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy

Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes

Endothelin receptor antagonist (ERA): Atrasentan

Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial

Glucagon-like peptide (GLP)-1 receptor agonist

ClinicalTrials.gov	Find Studies *	About Studies •	Submit Studies +	Resources *	About Site •	PRS Login
Home > Search Results > Study Record Datail					្ពទ	ave this study

A Research Study to See How Semaglutide Works Compared to Placebo in People With Type 2 Diabetes and Chronic Kidney Disease (FLOW)

Perkovic et al. *NEJM* 2019 Heerspink et al. *Lancet* 2019 Bakris et al. *NEJM* 2021 RCT NCT 03819153

Sodium glucose co-transporter 2 (SGLT2) inhibitors

- SGLT2 almost exclusively expressed in the proximal tubules (PT)
 - 90% of filtered glucose is reabsorbed in the apical membrane of the PT by SGLT2
- Modestly lower HbA1c
- Modestly lower SBP
- Durable and significant protection against diabetic kidney disease and cardiovascular disease
- Mechanism of protection likely multifactorial and incompletely understood

Sodium glucose co-transporter 2 (SGLT2) inhibitors

CREDENCE

A Primary Composite Outcome

No. at Risk

University of Colorado

Anschutz Medical Campus

Placebo	2199	2178	2132	2047	1725	1129	621	170
Canagliflozin	2202	2181	2145	2081	1786	1211	646	196

Primary composite outcome of kidney failure, doubling of the serum creatinine, or renal or CV death

EMPA-REG OUTCOME **DECLARE-TIMI 58** CREDENCE DAPA-HF **DAPA-Kidney EMPA-Reduced EMPA-Preserved DELIVER** dapa in HFpEF **EMPA-Kidney**

November 26, 2015 January 24, 2019 June 13, 2019 November 21, 2019 October 8, 2020 October 8, 2020 October 14, 2021 August 27, 2022 November 2022?

Courtesy of Dr. Topf, @kidney boy

Potential mechanisms of SGLT2 inhibitors

Kidney hypoxia early in the course of diabetes

University of Colorado Anschutz Medical Campus

Bjornstad et al. https://www.medrxiv.org/content/10.1101/2022.07.23.22277943v1

SGLT2 inhibitors in T2D

Adjusted for sex, GFR and BMI

Bjornstad et al. https://www.medrxiv.org/content/10.1101/2022.07.23.22277943v1

Single-cell RNA sequencing of kidney tissue

Bjornstad et al. https://www.medrxiv.org/content/10.1101/2022.07.23.22277943v1

Proximal tubular metabolic pathways reversed by SGLT2i

Glutathione conjugation

Pathway specific genes

log2FC_T2D_HC log2FC_T2Di_T2D

University of Colorado Anschutz Medical Campus

Bjornstad et al. https://www.medrxiv.org/content/10.1101/2022.07.23.22277943v1

(T2D + SGLT2i vs. T2D)

(T2D vs. HC)

Single-sample Gene Set Enrichment Analysis

Mineralocorticoid receptor antagonist (MRA): Finerenone

Mineralocorticoid receptor (MR) antagonists

- T2D has been linked to inappropriate MR activation with resultant inflammation and fibrosis.
- Murine MR knockout models showed protection against kidney inflammation and fibrosis.
- In CRIC, higher serum aldosterone concentrations predicted greater risk of CKD progression in adults with and without T2D.

Mineralocorticoid receptor antagonist (MRA): Finerenone

Mineralocorticoid receptor (MR) antagonists

A Primary Composite Outcome

The primary composite outcome in FIDELIO-DKD: kidney failure, a sustained decrease of at least 40% in the eGFR from baseline, or death from renal causes.

Endothelin receptor antagonists

- Endothelins (1-3) linked to various diseases, including DKD
 - In CKD/DKD: increased kidney endothelin-1 production
- Endothelin receptor A (ERA) and Endothelin receptor B (ERB)
 - <u>ERA</u> activation induces pro-inflammatory and pro-fibrotic pathways, glomerular hyperfiltration through vasoconstriction efferent vasculature
 - <u>ERB</u> in collecting duct stimulate sodium excretion

Kohan et al. *Kidney Int* 2014 Dhaun et al. *Hypertension* 2009 Hunter et al. *Hypertension* 2009

Endothelin receptor antagonist (ERA): Atrasentan

Endothelin receptor A activation

ERA Blockade reduces:

- Systemic blood pressure
- Glomerular hypertension
- Efferent vasodilation
- Proteinuria

But increases sodium retention Role of ERB blockade

> Kohan et al. *Kidney Int* 2014 Dhaun et al. *Hypertension* 2009 Hunter et al. *Hypertension* 2009

Endothelin receptor antagonist (ERA): Atrasentan

Atrasentan (ET_{A:B} 1200:1): design of the SONAR trial

Primary composite endpoint:

- 1. Time to doubling of serum creatinine from baseline (confirmed by 30-day serum creatinine)
- Time to ESRD defined as eGFR <15 mL/min/1.73 m², need for chronic dialysis (both confirmed after 90 days), renal transplantation or renal death

Prematurely ended due to few events

Endothelin receptor antagonist (ERA): Atrasentan

Main outcomes of the SONAR trial

		Atrasentan (n=1325)		Placebo (n=1323)		Hazard ratio (95% CI)	p value*
		Number	Annual rate	Number	Annual rate	-	
	Primary outcome						
	Composite renal outcome	79 (6.0%)	2.8%	105 (7.9%)	3.7%	0.65 (0.49-0.88)	0.0047
	Doubling of serum creatinine	56 (4.2%)	2.0%	78 (5.9%)	2.7%	0.61 (0.43-0.87)	0.0055
	End-stage kidney disease	67 (5.1%)	2.4%	81 (6.1%)	2.9%	0.73 (0.53-1.01)	0.060
University of (Colorado						
Anschutz Me	dical Campus						Heerspink et al.

Heerspink et al. Lancet 2019

Glucagon-like peptide-1 (GLP-1) receptor agonists

- GLP-1 peptide hormone released from L-cells of the distal ileum in response to oral glucose.
- GLP-1 receptor activation has many effects:
 - Insulin secretion
 - Insulin sensitization
 - Increased perfusion
 - Reduced fibrosis
 - Reduced inflammation
- GLP-1RAs lower albuminuria and may attenuate eGFR decline in high-risk people with T2D.

GLP-1

GLP-1: preliminary evidence for kidney protection

• REWIND cardiovascular outcome trial with dulaglutide

	Dulaglutide (n=4949)		Placebo (n=4952)		Hazard ratio (95% CI)	p value
	Number of patients (%)	Incidence rate (number of events per 100 person- years)	Number of patients (%)	Incidence rate (number of events per 100 person- years)		
Main analyses of renal effect						
Sustained decline in eGFR of \geq 40%	169 (3.4%)	0.66	237 (4-8%)	0.93	0.70 (0.57-0.85)	0.0004
Composite renal outcome with this decline	587 (11.9%)	2.36	751 (15.2%)	3.10	0.76 (0.68-0.84)	<0.0001

Glucagon-like peptide (GLP)-1 receptor agonist

FLOW: renal outcomes trial with semaglutide

TRIAL DESIGN

REMODEL: A Research Study to Find Out How Semaglutide Works in the Kidneys Compared to Placebo, in People With Type 2 **Diabetes and Chronic Kidney Disease**

105 participants with T2D

- HbA_{1c} ≤9.0% (≤75 mmol/mol)
- **RAAS** blocker treatment*
- eGFR ≥40 to <75 mL/min/1.73 m²
- UACR ≥30 to ≤5,000 mg/g[†]
- Capped SGLT-2i use

Trial information

- Multicentre trial
- Assessments included clinical + imaging, kidney biopsies (n=45); multiparametric MRI, GFR measurements, biochemistry and biobanking
- Conducted in Canada, France, Italy, Poland, South Africa, Spain, United States.

Key endpoints

- **Clinical:** Change in UACR and mGFR
- Anti-inflammation: change in inflammatory gene expression (single-nucleus RNAseq; from biopsies), biomarkers and T1+T2 mapping (measured using MRI)
- Oxidative stress: change in ROS gene expression and biomarkers (circulating and urine)
- Hemodynamics: change in kidney hypoxia (measured using MRI) and RAAS biomarkers and gene expression; mean arterial flow & perfusion (measured using MRI)

Steering Committee

Participating countries

Kretzler

Biornstad

GLP-1/GIP: prelim. evidence for kidney protection

• Posthoc analysis of SURPASS-4 trial (tirzepatide):

TREASURE CKD: Tirzepatide Mechanism of Action Study on Renal Function (TREASURE-CKD)

Key endpoints

- Clinical: Change in UACR and mGFR
- Kidney oxygenation, perfusion and renal blood flow: multiparametric MRI
- Kidney oxidative metabolism: C-11 acetate PET

Steering Committee -

Trials in recent years have ended this drought

SGLT-2 inhibitors

Mineralocorticoid receptor antagonist (MRA): Finerenone

ORIGINAL ARTICLE

ORIGINAL ARTICLE

Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy

Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes

Endothelin receptor antagonist (ERA): Atrasentan

Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial

Glucagon-like peptide (GLP)-1 receptor agonist

ClinicalTrials.gov	Find Studies *	About Studies •	Submit Studies +	Resources *	About Site •	PRS Login
Home > Search Results > Study Record Datail					្ពុទ	ave this study

A Research Study to See How Semaglutide Works Compared to Placebo in People With Type 2 Diabetes and Chronic Kidney Disease (FLOW)

Perkovic et al. *NEJM* 2019 Heerspink et al. *Lancet* 2019 Bakris et al. *NEJM* 2021 RCT NCT 03819153

Do we need to combine these drugs?

Patients at risk

A Primary Composite Outcome

No. at Risk

Placebo	2841	2724	2586	2379	1758	1248	792	453	82
Finerenone	2833	2705	2607	2397	1808	1274	787	441	83

A Primary Composite Outcome

to. at Misk								
lacebo	2199	2178	2132	2047	1725	1129	621	170
anagliflozin	2202	2181	2145	2081	1786	1211	646	196

How can we combine these drugs?

- 1) Do these drugs have additive effects (efficacy)? → Mechanism of action
- 2) Do these drugs have (potential) problematic interactions?
- 3) Can these drugs mitigate agent-specific adverse effects?

1) Individual kidney protective mechanisms

RAAS blockers

Amelioration of glomerular hyperfiltration

Endothelial effects angiotensin-II blockade

Resulting in postglomerular/efferent dilation

Reduction blood pressure

Jniver

SGLT-2 inhibitors

Amelioration of glomerular hyperfiltration

Activation of tubuloglomerular feedback

Reduction kidney workload/kidney hypoxia

Reduction blood pressure

MRA: Finerenone	ERA: Atrasentan	GLP-1RA
Reduction in fibrosis	Reduction in inflammation	Reduction in fibrosis
Reduction in inflammation	Reduction in glomerular pressure	Reduction in inflammation
sity of Colorado utz Medical Campus	Improved endothelial function	Improved energetics

A closer look at the kidney hemodynamic effects of SGLT2 inhibitors

Anschutz Medical Campus

Van Bommel, van Raalte et al. Kidney International Ott, Schmieder. Cardiovascular diabetology

RECOLAR study

60%

65% 70%

75%

80%

85%

Preglomerular resistance: % change vs placebo

90%

95%

105%

110%

100%

University of Colorado Anschutz Medical Campus

Scholtes, van Raalte, Circulation 2022 *in press*

Participants & Methods: morphometry

Saulnier, Bjornstad et al. Diabetes 2021

Correlations between kidney hemodynamics and structural lesions

P-values *** <0.0001 **<0.01 *<0.05. Adjustment for age, sex, HbA1c and mean arterial pressure.

Associations of structural lesions and DKD progression

- Systematic review and meta-analysis by Li et al examining trials that combined SGLT2 inhibitors + GLP-1RA showed superior effects (compared to monotherapy) on reducing:
 - HbA1c
 - Body weight and BMI
 - SBP
 - LDL-C
- However, outcome trials with kidney endpoints are needed to determine additive effects.

- We have limited data regarding potential additive effects
- Mechanisms seem complementary
- Background FIDELIO: RAAS blockade 100%, SGLT2 inhibition 5%

A Study to Learn How Well the Treatment Combination of Finerenone and Empagliflozin Works and How Safe it is Compared to Each Treatment Alone in Adult Participants With Long-term Kidney Disease (Chronic Kidney Disease) and Type 2 Diabetes (CONFIDENCE)

Albuminuria Lowering Effect of Dapagliflozin, Eplerenone and Their Combination in Patients with Chronic Kidney **Disease: A Randomized Cross-Over Clinical Trial**

Dapaglifizoin in combination with eplerenone reduced albuminuria to a greater extent than either drug alone. Compared to eplerenone, dapagliflozin-eplerenone combined decreased serum potassium.

10 mg

doi: 10.1681/ASN.2022020207

JASI

THE AMERICAN SOCIETY OF NEPHROLOG

Figure 1. Analysis of efficacy outcomes in patients receiving/not receiving a GLP-1RA

	Finerenone	Placebo	Finerenone	Placebo			Pinteraction
	n/N	(%)	n per 1	00 PY		Hazard ratio (95% CI)	
Cardiovascular composite							
Overall	825/6519 (12.6)	939/6507 (14.4)	4.34	5.01	⊢ ∎→	0.86 (0.78, 0.95)	
GLP-1RA use at baseline	58/497 (11.7)	64/447 (14.3)	3.79	4.90	· · · · · · · · · · · · · · · · · · ·	0.76 (0.52, 1.11)	0.63
No GLP-1RA use at baseline	767/6022 (12.7)	875/6060 (14.4)	4.38	5.02	⊢ ∎→	0.87 (0.79, 0.96)	
Kidney composite (eGFR ≥ 57%)							
Overall	360/6519 (5.5)	465/6507 (7.1)	1.96	2.55		0.77 (0.67, 0.88)	
GLP-1RA use at baseline	22/497 (4.4)	27/447 (6.0)	1.47	2.10		0.82 (0.45, 1.48)	0.79
No GLP-1RA use at baseline	338/6022 (5.6)	438/6060 (7.2)	2.01	2.59	⊷ ∎ →	0.77 (0.67, 0.89)	
All-cause mortality							
Overall	552/6519 (8.5)	614/6507 (9.4)	2.76	3.10	-	0.89 (0.79, 1.00)	
GLP-1RA use at baseline	33/497 (6.6)	25/447 (5.6)	2.05	1.79		→ 0.97 (0.56, 1.67)	0.41
No GLP-1RA use at baseline	519/6022 (8.6)	589/6060 (9.7)	2.83	3.20		0.89 (0.79, 1.00)	

University of Colorado Anschutz Medical Campus

- We have limited data regarding additive effects
- Mechanisms seem complementary
- Background SONAR:
 - RAAS blockade 100%
 - SGLT2 inhibition 1-2%

Zibotentan and Dapagliflozin for the Treatment of CKD (ZENITH-CKD Trial) (ZENITH-CKD)

2) Potential interactions between drugs; 3) safety/side effects

RAAS blockers

Hypotension/dehydration

Small increment in potassium levels

SGLT-2 inhibitors

Genital mycotic infections

Dehydration/hypovolemia

Fractures/amputations

Euglycemic DKA

MRA: Finerenone

Hyperkalemia

Little anti-androgen effects

University of Colorado Anschutz Medical Campus

ERA: Atrasentan

Edema/fluid retention

Hospitalization for heart failure

GLP-1RA

Gastrointestinal

Hypoglycemia

Progression of retinopathy

• Worries regarding potential increments in acute kidney injury (AKI)

University of Colorado Anschutz Medical Campus

• SGLT2 increase plasma renin and aldosterone levels

University of Colorado Anschutz Medical Campus

• The main problem with finerenone is hyperkalemia (K > 5.0 mM excluded in outcome trials)

	SGL	SGLT2 inhibitors		Placebo		
	n/N	Events per 1000 patient-years	n/N	Events per 1000 patient-years	0	Hazard Ratio (95% CI)
CANVAS Program	137/5795	8.2	85/4347	9.2		0.89 (0.67, 1.17)
CREDENCE	121/2202	21.6	154/2199	27.9		0.77 (0.61, 0.98)
DAPA-CKD	159/1455	56.9	179/1451	65.3		- 0.88 (0.71, 1.09)
DECLARE-TIMI 58	53/8582	1.6	78/8578	2.3		0.67 (0.47, 0.95)
EMPA-REG OUTCOME	216/4687	17.2	124/2333	20.5		0.83 (0.67, 1.04)
VERTIS CV	291/5493	18.7	157/2745	21.2		- 0.90 (0.74, 1.09)
Overall (I ² =0.0%; P _{heterogeneity} =0.71)					•	0.84 (0.76, 0.93) P<0.001
				0.4	0.6 0.8 1.0	1.2 1.6 2.0
				Fav	vors SGLT2 inhibitors	Favors placebo

Figure 1. Effects of SGLT2 inhibitors on serious hyperkalemia (central laboratory-determined serum potassium ≥6.0 mmol/L).

• The main problem with ERA is fluid retention and hypertensive HF (despite stringent NT-proBNP levels in exclusion criteria)

*Interaction studied in the ongoing ZENITH-CKD trial (Zibotentan and Dapagliflozin)

- Additive vasodilative kidney hemodynamic actions contributing to beneficial mGFR "dip"
- Additive beneficial effects on systemic blood pressure
- Combination is safe
- Support early combination of these drugs to halt DKD

- Interaction studies are largely unavailable
- Based on different mechanism of action, efficacy could be additive
- No major safety concerns with respect to side effects
- SGLT2 could off-set specific adverse effects of ERA and MRA drugs

Current knowledge gaps

- Mechanism of action data for finerenone and ERA in humans
- Cross-over combination therapy studies
- DKD versus non-diabetes CKD studies
- Studies in people with T1D and youth with T2D
- Outcome trials for dual (e.g., tirzepatide) and triple incretin agonists

New Guidelines!

Screening recommendations

Who and when to screen?

Yearly starting 5 years after diagnosis

Yearly starting at diagnosis

Spot urine ACR and eGFR

How to screen?

What to do with a positive result?

Repeat and confirm:

- · Evaluate possible temporary or spurious causes
- Consider using cystatin C and creatinine to more precisely estimate GFR
- Only persistent abnormalities define CKD

Initiate evidence-based treatments

Management recommendations

KDIGO and ADA Consensus. Diabetes Care 2022

Management recommendations

Table 2-Considerations for selecting glucose-lowering agents in patients with T2D and CKD (2,17)

	Progression of CKD	ASCVD	Heart failure	Glucose- lowering efficacy	Hypoglycemia risk	Weight effects	Cost
Metformin	Neutral	Potential benefit	Potential benefit	High	Low	Neutral	Low
SGLT2 inhibitors	Benefit*	Benefit ^o	Benefit	Intermediate	Low	Loss	High
GLP-1 receptor	ALCONO DE LA CONTRA DE LA CONTR	a sub-constants	Potential			10-22-02	

Missing MRA, ERA, and dual and triple incretin agonists

Thiazolidinediones	Neutral	Potential benefit (pioglitazone)	Increased risk	High	Low	Gain	Low	
α-Glucosidase inhibitors	Neutral	Neutral	Neutral	Intermediate	Low	Neutral	Low	
Neutral Potential benefit or intermediate glucose-lowering efficacy					Poten	Potential risk or high cost to patient		
Benefit (organ protection, high efficacy, low hypoglycemia risk, weight loss, or low cost)								

Collaborators

• • • University of Colorado:

Kristen J NadeauPhil Zeitler

- Tom Inge
- Laura Pyle
- Judy Regensteiner
- Michal Schafer
- Michel Chonchol
- Jane Reusch
- Carlos Roncal
- Richard J Johnson
- Kalie Tommerdahl
- Marian J Rewers
- Janet Snell-Bergeon
- Lorna Browne
- Alex Barker CCHMC:
- Eddie Nehus
- Mark Mitsnefes **BMC**:
- Sushrut Waikar

University of Colorado Anschutz Medical Campus

NIDDK:

• Robert G. Nelson

Stanford University:

• David M. Maahs

University of Chicago:

- Pottumarthi Prasad CDC:
 - Meda Pavkov

Johns Hopkins:

Chirag Parikh

University of Washington:

• Ian de Boer

University of Michigan:

- Matthias Kretzler
- Jeff Hodgin
- Eva Feldman
- Markus Bitzer UCSD:
 - Joachim Ix

University of Toronto:

- David Z. Cherney
 - Farid Mahmud
 - Bruce A. Perkins
 - Julie Lovshin

VU University Medical Center:

• Yuliya Lytvyn

Frik I ovblom

Etienne Sochett

UMCG:

• Hiddo Lambers Heerspink

University of Helsinki:

Daniel Gordin

- Steno Diabetes: • Peter Rossing
- Frederik Persson

University of Poitiers:

• Pierre J. Saulnier

Funding and Team Acknowledgements

Want to join our team? Looking for postdoc and research associates – please email <u>petter.m.bjornstad@cuanschutz.edu</u> if interested.

